Sudden Oak Death

Aka Ramorum Blight

California Oak Woodlands

- Cover 10% of California’s land area.
- Characterized by Mediterranean climate.
- Roughly 4 million acres.
- High levels of biodiversity (Swiecki and Bernhardt, 2001).
 - 300 vertebrate species
 - 1100 species of native vascular plants
 - 5000 species of arthropods
Disease Complex
Introduction

- Sudden Oak Death (SOD)
 - Affects 3 species of California oaks.
 - Caused by water mold *Phytophthora ramorum*.
 - Causes bark cankers eventually girdling trees, results in “sudden” mortality.

Photo: http://www.forestryimages.org/
Tree Species

- California black oak
 - *Quercus Kelloggii.*
 - Valuable hardwood lumber resource similar to northern red oak.
Tree Species

- California black oak
 - Mesophytic
 - Transitory between chaparral and upland, moist conifer habitat.
 - Site adaptations:
 - Mild temperatures: 31-82 degrees F.
 - Well drained soils.
 - 1,000-5,000 ft in elevation.

Photo: U.S. Forest Service
Tree Species

- **Coast live oak**
 - *Quercus Agrifolia*
 - Non commercial Species: Fuel wood only commercial use
 - Ecologically significant as a source of mast.
Tree Species

- **Coast live oak**
 - Dominant tree in low elevation oak woodlands and chaparral.
 - Evergreen, drought tolerant.
 - Extremely fire tolerant
 - Regenerates by sprouting following fire.
Tree Species

- **California tanoak**
 - *Lithocarpus densiflorus*.
 - Medium sized tree, co-occurs with redwood and douglas fir in coastal ranges.
 - Commercial uses: fuel and pulp.
 - Ecologically significant as a mast source.

Photo: Joseph O'Brien, USDA Forest Service, Bugwood.org

Photo: Steven J. Baskauf, Ph.D, Vanderbilt University
Tree Species

- California tanoak
 - Site adaptations:
 - Humid climate: 40-100 inches of rainfall.
 - Moderate temperatures: 36-75 degrees F.
 - Deep, well drained soils
 - Best adapted to humid, moist slopes of coastal ranges.

Photo: U.S. Forest Service
Health Management Objectives

- Maintain SOD susceptible oak species as major components of the Californian oak woodland ecosystem.
 - Preserve California black oak as a commercial species.
 - Maintain abundance of coast live oak and tanoak within oak woodlands in order to preserve their ecological value.
Primary Stress

- *Phytophthora Ramorum.*

- Oomycete: “water mold”
 - Reproduces both sexually and asexually.

- Many susceptible host species.
 - Varying symptoms by host.

Photo: genome.jgi-psf.org/Physo1_1/pramorum.jpg
P. ramorum Lifecycle

Sporangium germinate, releasing zoospores.

Chlamydospores are produced by foliar infections. Chlamydospores are long-lived and durable, persisting in soil and water for long periods.

P. ramorum requires a film of water on leaf surfaces for zoospores to infect new hosts.
P. ramorum Lifecycle

- 2 mating types required for sexual reproduction.
- Second mating type has not been detected in U.S. forests.
 - Detected in U.S. nurseries.

Adapted from ‘The disease cycle of late blight caused by Phytophthora infestans’, G.N.Agrios, (with copyright permission Academic Press)
P. ramorum Lifecycle

- **Host Species:**
 - 40 genera identified as hosts (2005).
 - Most species are foliar hosts (produce inoculum).
 - Lithocarpus, Quercus species are “canker hosts”. Do not produce viable inoculum.

<table>
<thead>
<tr>
<th>TABLE 1 Plant genera known to have species associated with Phytophthora ramorum in forests or nurseries1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies</td>
</tr>
<tr>
<td>Acer*</td>
</tr>
<tr>
<td>Aesculus*</td>
</tr>
<tr>
<td>Arbutus*</td>
</tr>
<tr>
<td>Arctostaphylos*</td>
</tr>
<tr>
<td>Calluna</td>
</tr>
<tr>
<td>Camellia</td>
</tr>
<tr>
<td>Castanea</td>
</tr>
<tr>
<td>Clintonia</td>
</tr>
<tr>
<td>Corylus*</td>
</tr>
<tr>
<td>Drimys</td>
</tr>
<tr>
<td>Dryopteris$^+$</td>
</tr>
<tr>
<td>Fagus$^+$</td>
</tr>
<tr>
<td>Fraxinus$^+$</td>
</tr>
<tr>
<td>Hamamelis</td>
</tr>
<tr>
<td>Heteromeles*</td>
</tr>
<tr>
<td>Kalmia</td>
</tr>
<tr>
<td>Laurus</td>
</tr>
<tr>
<td>Leucothoe</td>
</tr>
<tr>
<td>Lithocarpus$^#$</td>
</tr>
<tr>
<td>Lonicera$^+$</td>
</tr>
</tbody>
</table>

1Symbols: *, found in California or Oregon forests; $^#$, canker host in North America; 8, canker host in Europe. Canker hosts refer to species in which infection by *P. ramorum* results in bleeding cankers on the main trunk of the tree; this is the symptom usually associated with sudden oak death. On all other hosts *P. ramorum* causes foliar or twig blight (based on 2, 10, 18, 63).
P. ramorum Symptoms

- **Foliar Host Species**
 - Source of viable inoculum.
 - Twig and leaf dieback main symptom.

P. Ramorum infected Rhododendron

Photo: Eric Chamberlain, USDA APHIS PPQ

P. ramorum symptoms on California Bay Laurel

Photo: Joseph O'Brien, USDA Forest Service, Bugwood.org

P. ramorum symptoms on douglas fir.

Photo: Joseph O'Brien, USDA Forest Service, Bugwood.org
P. ramorum Symptoms

- **Canker Host Species**
 - *Lithocarpus denisflorus*
 - Most susceptible species.
 - All age classes vulnerable.
 - Mortality may occur within 1 year.
 - **Symptoms**
 - Dark, bleeding cankers on twigs and bark.
 - Foliar lesions.
 - Discolored vascular tissue.
 - Sheppard’s Crook

Photos: J.M Davidson et al. 2003
P. ramorum Symptoms

- **Canker Host Species**
 - *Quercus kelloggii, Q. agrifolia*
 - “Dead end” infection: no inoculum produced.
 - Symptoms
 - Bleeding bark cankers.
 - “Sudden” death: crown mortality.

Photo: Garbelotto et al. 2001
Disease Complex Development

- Predisposing Factors:
 - Non-native pathogen
 - Proximity of foliar host
 - Land use history
 - Cutover stands entering period of high competition
 - Lack of stand thinning events
Disease Complex Development

- **Predisposing Factors**
 - High amounts of early precipitation followed by drought.
 - Periods of cool, moist weather.
 - Production of inoculum.
 - Promotes new infections.

![1997 vs. Normal Monthly Rainfall](chart.png)
Disease Complex Development

- Inciting Factors
 - Infection by a *P. ramorum* spore.
Disease Complex Development

- Contributing Factors
 - Appear not to play role in primary stress lifecycle
 - *Hypoxylon thouarsianum*
 - Oak bark beetles
 - Ambrosia Beetles
Secondary Stress

- *Hypoxylon thouarsianum*
 - Sapwood decay fungus
 - Coal black fruiting bodies
 - Latent infections become opportunistic when host is stressed.

Photo: Garbelotto et al. 2001
Secondary Stress

- **Oak Bark Beetles**
 - *Pseudopityophthorus pubipennis, P. agrifoliae*

- **Signs & Symptoms**
 - Colonize outer sapwood.
 - Tunnels across grain.
 - Tan piles of frass.

Photo: Swiecki and Bernhardt 2006
Secondary Stress

- Ambrosia Beetles
 - *Monarthrum dentiger, M. scutellare*
- Signs & Symptoms
 - Galleries extending into sapwood.
 - White piles of frass.
- May contribute to stem failure.

Photo: Swiecki and Bernhardt 2006
Health Management Plan

- Pre-emptive:
 - Remove all foliar hosts with 10 meters of oaks.
 - Caution: thinning shock, residual stand damage.

Photo: http://bapd.org/hamilton-gulch-long-sequence.html
Health Management Plan

- **Pre-emptive:**
 - Use prescribed fire to eliminate susceptible species.
 - Maintain vigor on susceptible species

- **QUARANTINE:**
 - Infected nursery material.
 - Soil from infected areas.
 - Wash vehicle tires, shoes, etc.
 - Plant materials: firewood, foliage, etc.
Health Management Plan

- Monitoring and Surveying
 - Steam Monitoring.
 - Useful for detecting presence/absence within watershed.
 - Ground surveys.
 - Aerial surveys.
 - Can detect “patchy” outbreaks
 - Nursery monitoring.
 - Detect infected plant material

Photo: http://www.fs.fed.us/r6/nr/fid/health/2001highlights-or.shtml
Health Management Plan

- **Reactive Measures:**
 - Phosphite fungicides:
 - Bark application.
 - Primarily Preventative.
 - Mild therapeutic value.

![Photo: www.phytosphere.com/publications](image-url)
Health Management Plan

- Reactive Measures:
 - Remove and destroy all infected material.
 - Remove all foliar hosts within 10 meters of oak hosts.

Photo: Chris Evans, River to River CWMA, Bugwood.org
Conclusion

- Relatively new disease complex:
 - First identified in U.S. in mid 90’s.
 - Relatively unstudied.
- Novel forest pathogen.
 - Initially poorly studied and understood.
 - Today much of this uncertainty has been removed.

1993: *P. ramorum* isolated as a nursery pest in Germany on Rhododendrons.

2000: Plant Pathologist David Rizzo isolates *P. ramorum* as causal agent of SOD.

2000+: Bulk of Research Conducted on SOD.
Factors Affecting Perception of Risk

- Uncontrollable
- Involuntary
- Unfamiliar
- Poorly understood
- Uncertainty
- Exotic
- Synthetic
- Dread
- Catastrophic potential
- Affects future generations
- Related to children
- Delayed effects
- Irreversible
- Questionable benefits
- Unfair
- Identifiable victim
- Personal stake
- Untrustworthy source
- Linked to other risks
- High media attention

Conclusion

“Sudden” Oak Death

- Initiated by non-native pathogen.
- Exacerbated by atypical periods of cool moist weather.
- Spread primarily by foliar hosts.
- Monitoring of nursery shipments critical to preventing spread.
- Worldwide risk?
Further Spread?

Sources: DEFRA, 2004; Huberli et al., 2003; NAPFFAST, 2006; NatureServe, 2002; Orlikowski and Szukuta, 2002; Tooley et al., 2005; Vogtmann et al., 2001; Wayres et al., 2001
Created By: Glenn Fandey, Roger Magnesey, Marcel Oulisse, Bill Smith, and Ross Marentas
USDA&APHIS-PRVS/PHST-PERAL/MSU/USDA-USFWS/UNCC
NAD83 Albers Equal Area Conic
March 30, 2007