Eastern Hemlock and Hemlock Woolly Adelgid

Tsuga canadensis (L.) Carr)

http://na.fs.fed.us/fhp/hwa
Ecological Significance of Eastern Hemlock

- Long lived, late successional climax trees
 - 250 to 300 years to reach maturity.
 - May live for 800 years or more.
- Provides critical wintering habitat
 - Moose
 - White tailed deer
 - Ruffed grouse
 - Turkey
 - Songbirds
Economic Significance of Hemlock

- Poor wood characteristics – ring shake
- Never had high economic demand
- Used in
 - Low grade products, such as pallets
 - Beams
 - Pulp
 - Bark used for landscaping mulch.
Ornamental Significance

- Good foliage color
- Adaptable to shearing
- Relative freedom from native insects and disease.
Eastern Hemlock Range

- Eastern Hemlock grows best in a cool humid climate that has adequate moisture in all seasons.
- Avg temps 10°F in winter to 60°F in summer
- Average precipitation around 29”
Soil

• The soils for eastern hemlock are not specific
 – Moist to very moist
 – Good drainage
 – Highly acidic
Management Objectives

- Component of naturally regenerated stands
- Ornamental plantings
Hemlock Woolly Adelgid (HWA)

- *Adelges tsugae*
- Family: Hemiptera
- Closely related to aphids
- Has asexual and sexual stages
- All *Adelges* species have spruce as a host for the sexual stage
- Native to Asia
HWA: Signs

• Adult is about the size of a period on a printed page

• Dry, white woolly substance on the twigs
 – Associated with masses of 50-300 eggs
 – Resembles the tip of a cotton swab, although somewhat smaller
 – Found at the base of the needles

Figure 5. Closeup of woolly ovisacs — the most obvious sign of HWA infestation.
Life Cycle

Life Cycle, Courtesy of Vince D’Amico and Mike Montom

Figure 5. Closeup of woolly ooze — the most obvious sign of HWA infestation.
Mechanism

- Inserts feeding stylet into stem at base of a needle
- The stylet follows vascular tissue to the parenchyma cells of the xylem rays
- Forms sheath – allows re-insertion after molting
- Absorbs nutrients that leak from parenchyma cells
Tree Symptoms

- Needles on infested branches desiccate
 - grayish-green
 - drop from the tree
- Most buds are also killed
 - little new growth.
- Dieback of major limbs occurs within two years
- Trees die in four years or persist in weakened state
Populations Rise and Fall

- On healthy tree, populations rapidly build.
- Stress results in decreased nutrients for insect – population declines.
- Tree recovers, nutrients in foliage increase, insect populations increase.
Predisposing Factors: Native of Asia

- Native to China and Japan
 - Harmless inhabitant
 - Common on forest and ornamental hemlock and spruce
- HWA occasionally attains high densities in Japan,
 - Only on ornamental trees grown on very poor sites.
 - Not significantly injured
 - Hemlocks have evolved resistance to the insect
 - Arthropods predators help minimize HWA populations
Predisposing Factors: HWA in North America

- Northwestern US – behaves as native insect
- Eastern US – invasive
 - Population originally from southern Japan
 - Only parthenogenetic reproduction
 - Can’t tolerate -20 to -30°C temperatures (0 to -20°F)
Cold Temperature Limitations

- Limits Balsam Woolly Adelgid to coastal areas
- HWA could be a cold hardy species.
 - Evolved at high elevations of Japan; as cold as -63°F.
- The mechanisms that influence cold hardiness are complex, and are not fully understood.

Figure 12. HWA mortality at minimum recorded temperature.

Kathleen S. Shields¹ and Carole A. S-J. Cheah²

¹USDA Forest Service, Northeastern Center for Forest Health Research, Hamden, CT; E-mail: kshields@fs.fed.us, Phone: (203) 230-4320
²The Connecticut Agricultural Experiment Station, Valley Laboratory, Windsor, CT; E-mail: ccheah@fs.fed.us, Phone: (203) 230-4305
• In the early 1950's, first observed in Virginia.
• 20-30 km per year
Now in 17 eastern states,
Predisposing Factors Related to Tree Species Adaptation

• HWA is an exotic.
• Eastern hemlock shows little natural resistance.
• Dry sites most vulnerable
 – On slope
 – Aspect: Not northern
 – Soils: Well drained or shallow
Inciting Factors

- High survival in mild winters?
- HWA nymphs are carried to new trees by:
 - the wind
 - carried by small mammals,
 - transportation by humans.
Contributing Factors

- HWA has the potential to kill the tree on its own.
- Weakened trees can succumb to
 - Wind
 - Armillaria
 - Scale insect
 - Borer
 - Drought
HWA and Drought

Figure 4. Cumulative tree mortality 1988 to 2001.

Preemptive Control Options

- Maximize Tree Vigor
 - Watering (1 inch/week)
 - Pruning
- Prevent Infestation
 - Sanitation – clean nursery stock
 - Quarantine - Maine
 - Education and Communication
Monitor and Survey

- Public education, professional training
- Investigate reports of infested planted hemlock
- Sample branches of hemlock in stands near infested areas
Reactive Control Options
Infested Plantings

• Chemical spraying
 – Diazinon
• Destroy trees
Reactive Control Options
Ornamental Trees in Infested Areas

- Imidacloprid
- Soil treatment
 - Injection
 - At least 50 ft from water body
- Inject tree
- Water as needed
Reactive Control Options: Natural Stands

- Harvest or Salvage
- No Action
- Biological control introductions
Sasajiscymnus tsugae
Japanese “lady beetles”

• Specific to adelgids
• Survive Maine winters?
Laricobius nigrinus

- Native to western North America
- Specific to adelgids
Conclusion: Hemlock woolly adelgid

- Threatens to substantially reduce eastern hemlock populations
- Vulnerable trees:
 - On dry sites
 - Warm winters
- Northern spread uncertain
- Quarantines
- Must survey and eradicate spot infestations
- Introduce biological controls